

CONCRETE RESISTIVITY METER

Used in the assessment of concrete for :

corrosion

rate of corrosion

 probability of corrosion

PRINCIPLES

The corrosion of steel reinforcement in concrete is an electrochemical process which is directly affected by the resistivity of the surrounding concrete.

The lower the resistivity, the greater the chance that corrosion is occurring.

Suggested guidelines for the likelihood of significant corrosion are:

FEATURES

- Superior patented measurement technique
- Overcomes the problems of high-contact resistance and unequal contact resistance
- Wenner linear four-point probe
- Adjustable probe spacing
- Six ranges covering up to 2MΩ.cm
- Can measure resistivity, true resistance and current
- Analogue output for data logging
- 'Remote' output for measurement and control by automated logging systems

 ρ = Resistivity

SPECIFICATION

Functions

Selected by three position switch on front panel:

- Resistivity
- Current
- Resistance

Measurements

- Six ranges
- Accuracy: ±2% of reading
- Probe spacing: adjustable from 0-10cm

Display

- 3¹/₂ digit LCD
- Overrange indicated by blanking of last 3 digits
- Low battery indicator

Outputs

 0-10V analogue output from BNC socket on front panel

Remote Function

 Meter can be switched on or off and analogue output can be obtained from the Remote socket on the rear panel

Environmental

- Power supply: Supplied with 4 NiCd rechargeable C-type cells
- Battery life: up to 10hrs with NiCd cells or up to 30hrs with standard alakaline cells
- Operating Temperature Range: 0°C to 40°C
- Packaging: 1 carton. Weights: Net 4.5kg, Gross 5.5kg

RM KIT

- Resistivity Meter
- Four-point Wenner Probe
- Probe Cable
- Spare probe tip material
- Battery Charger
- Manual
- Carrying Case

MEASUREMENT RANGES

	Resistivity	Current	Resistance
Range			
1	2kΩ.cm	2mA	20k Ω
2	20kΩ.cm	2mA	200kΩ
3	20kΩ.cm	200µA	200kΩ
4	200kΩ.cm	200µA	2 ΜΩ
5	200kΩ.cm	20µA	2 ΜΩ
6	2MΩ.cm	20µA	20 ΜΩ

Recommended References:

BS 1881: Part 201:1986 *Testing Concrete. Guide to the use of non-destructive methods of test for hardened concrete.*

BUNGEY JH Testing of Concrete in Structures (2nd Ed.). Blackie A & P, London, 1989.